我们在大数据的领域中总是听说过数据挖掘、OLAP、数据统计等等的专业词汇。这些词汇如果从字面意义上讲,我们很难区分,今天在这篇文章中我们给大家来好好介绍一下数据挖掘与大数据、OLAP、数据统计的区别。
首先我们给大家说一下数据分析,数据分析是一个大的概念,理论上任何对数据进行计算、处理从而得出一些有意义的结论的过程,都叫数据分析。从数据本身的复杂程度、以及对数据进行处理的复杂度和深度来看,可以把数据分析分为4个层次,分别是数据统计、OLAP、数据挖掘、大数据。
先说一下数据统计,数据统计就是最基本、最传统的数据分析,自古有之。是指通过统计学方法对数据进行排序、筛选、运算、统计等处理,从而得出一些有意义的结论。
然后给大家说一下OLAP,OLAP就是联机分析处理(On-Line Analytical Processing,OLAP)是指基于数据仓库的在线多维统计分析。它允许用户在线地从多个维度观察某个度量值,从而为决策提供支持。OLAP更进一步告诉你下一步会怎么样,如果我采取这样的措施又会怎么样。
然后就给大家说一下数据挖掘,数据挖掘是指从海量数据中找到人们未知的、可能有用的、隐藏的规则,可以通过关联分析、聚类分析、时序分析等各种算法发现一些无法通过观察图表得出的深层次原因。针对此可以采取有针对性的管理措施。
接着给大家说一下大数据,大数据是指用现有的计算机软硬件设施难以采集、存储、管理、分析和使用的超大规模的数据集。大数据具有规模大、种类杂、快速化、价值密度低等特点。大数据的“大”是一个相对概念,没有具体标准,如果一定要给一个标准,那么10-100TB通常称为大数据的门槛。 以上就是本篇文章
【数据挖掘和大数据、OLAP、数据统计的区别】的全部内容了,欢迎阅览 ! 文章地址:http://lianchengexpo.xrbh.cn/quote/13478.html
行业
资讯
企业新闻
行情
企业黄页
同类资讯
网站地图
返回首页 迅博思语资讯移动站 http://lianchengexpo.xrbh.cn/mobile/ , 查看更多